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Abstract. Canonical transformations of the extended phase space are applied to the integrable
Sẗackel systems. All these transformations may be associated with an ambiguity of the Abel map
on the corresponding hyperelliptic curve. For some Stäckel systems with two degrees of freedom
the 2× 2 Lax representations and the dynamicalr-matrix algebras are constructed.

1. Introduction

On the 2n-dimensional symplectic manifoldM (phase space) with coordinates{pj , qj }nj=1
let us consider a Hamiltonian system with some Hamilton functionH(p, q). To consider
canonical transformations of the timet , we add a new coordinateqn+1 = t with the
corresponding momentapn+1 = H to the initial phase spaceM. The resulting(2n + 2)-
dimensional spaceME is the so-called extended phase space of the given Hamiltonian system.

By definition canonical transformations of the extended phase spaceME preserve the
differential form� =∑n+1

j=1pj dqj and the Hamilton–Jacobi equation

∂S
∂t

+H = 0. (1.1)

Such transformations have the following form:

t 7→ t̃ dt̃ = v−1(p, q)dt (1.2)

H 7→ H̃ = v(p, q)H. (1.3)

It is known that any canonical transformation of the initial phase spaceMmaps any integrable
system into the other integrable system. We do not have a regular way to obtain a canonical
transformation of the extended phase spaceME , which maps a given integrable system into
the other integrable system.

In this paper for the Stäckel system we introduce canonical transformations of the extended
phase space associated with the ambiguity of the Abel map on the hyperelliptic curve. For some
Sẗackel systems we propose Lax pairs andr-matrix algebras. As examples the Henon–Heiles
systems, integrable Holt potentials and the integrable deformations of the Kepler problem are
discussed in detail.
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2. Duality between the Sẗackel systems

The systems associated with the name of Stäckel [3] are holonomic systems on the phase space
R2n equipped with the canonical variables{pj , qj }nj=1, with the standard symplectic structure
�n and with the following Poisson brackets:

�n =
n∑
j=1

dpj ∧ dqj {pj , qk} = δjk. (2.1)

The non-degeneraten× n Sẗackel matrixS, whosej columnskj depends only onqj

detS 6= 0
∂skj

∂qm
= 0 j 6= m

definesn functionally independent integrals of motion

Ik =
n∑
j=1

cjk
(
p2
j +Uj

)
cjk = Skj

detS
(2.2)

which are quadratic in momenta. HereC = [cik] denotes an inverse matrix toS andSkj is
the cofactor of the elementskj . The common level surface of the integrals (2.2)

Mα =
{
z ∈ R2n: Ik(z) = αk, k = 1, . . . , n

}
(2.3)

is diffeomorphic to then-dimensional real torus and one immediately obtains

p2
j =

(
∂S
∂qj

)2

=
n∑
k=1

αkskj (qj )− Uj(qj ). (2.4)

HereS(q1 . . . , qn) is a reduced action function [4].
The corresponding Hamilton–Jacobi equation onMα (1.1) admits the variable separation

S(q1 . . . , qn) =
n∑
j=1

Sj (qj ) Sj (qj ) =
∫ √

Fj (qj ) dqj . (2.5)

Here the functionsFj (λ) depend onn parameters{αk}nk=1

Fj (λ) =
n∑
k=1

αkskj (λ)− Uj(λ).

By definition the first integralI1 = H is the Hamilton function associated with the timet .
Hence, coordinatesqj (t, α1, . . . , αn) are determined from the equation explicitly depending
on time

n∑
j=1

∫ γj (pj ,qj )

γ0(p0,q0)

s1j (λ) dλ√∑n
k=1 αks1j (λ)− Uj(λ)

= β1 = t (2.6)

and fromn− 1 other equations

n∑
j=1

∫ γj (pj ,qj )

γ0(p0,q0)

skj (λ) dλ√∑n
k=1 αkskj (λ)− Uj(λ)

= βk k = 2, . . . , n. (2.7)

The solution of the problem is thus reduced to solving a sequence of one-dimensional problems.
Now we turn to the canonical change of the time and prove the following.
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Proposition 1. If the two Sẗackel matricesS andS̃ can be distinguished in the first row only

skj = s̃kj k 6= 1

the corresponding Stäckel systems with the following Hamilton functions:

H̃ = v(q)H v(q) = detS(q1, . . . , qn)

detS̃(q1, . . . , qn)
(2.8)

are related by a canonical change of the time.

In fact, the Hamilton functionsH andH̃ obey equation (2.8), which follows from the definition
of the Hamiltonian,

H =
n∑
j=1

cj1
(
p2
j +Uj(qj )

)
(2.9)

and the definition of the inverse matrix with entries

cj1 = S1j

detS
= 1

detS

∂ detS

∂s1j
.

In contrast with the general coupling constant metamorphosis [1] equation (2.8) is independent
on any constant in the potentialU .

As an example, let us consider three matrices

S =
(

1 1
1 −1

)
S̃ =

(
q1 q2

1 −1

)
Ŝ =

(
q2

1 q2
2

1 −1

)
. (2.10)

The corresponding HamiltoniansH , H̃ andĤ defined by (2.9) are dual

H̃ = 1
2(q1 + q2)

−1H

Ĥ = 1
2(q

2
1 + q2

2)
−1H = q1 + q2

q2
1 + q2

2

H̃ .
(2.11)

For any functionξ(q)depending on coordinates only one obtains the following transformations
of the time:

dξ(q)

dt̃
= {H̃ , ξ(q)} = 1

2(q1 + q2)
−1{H, ξ(q)} = 1

2(q1 + q2)

dξ(q)

dt
. (2.12)

The uniform cubic potential

U(qj ) = 2α2q3
j + βq2

j + γ qj + δ (2.13)

gives rise to the HamiltonianH

H = 1
4(p

2
1 + p2

2) + α2(q3
1 + q3

2) + 1
2β(q

2
1 + q2

2) + 1
2γ (q1 + q2) + δ. (2.14)

By using the canonical transformation

q1 = 1
2(x + y) p1 = px + py

q2 = 1
2(x − y) p2 = px − py

(2.15)

for the first system, the more complicated transformation

q1 = 3

4
x2/3 +

py

3α
p1 = pxx1/3− 3α

2
y

q2 = 3

4
x2/3− py

3α
p2 = pxx1/3 +

3α

2
y
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for the system associated with̃S and the following change of variables in the third case:

q1 =
√
x −√y p1 = px

√
x − py√y

q2 = −i(
√
x +
√
y) p2 = i(px

√
x + py

√
x)

one obtains the Hamilton functions in the natural form

H = 1
2(p

2
x + p2

y) + 1
4α

2x(x2 + 3y2) + 1
4β(x

2 + y2) + 1
2γ x + δ

H̃ = 1
2(p

2
x + p2

y) + 9
8α

2x−2/3( 3
4x

2 + y2) + δx−2/3 + 3
4γ only by β = 0

Ĥ = 1

2
pxpy − β

2

1√
xy

+
γ

4

(
1 + i√
x
− 1− i√

y

)
+ δ by α = 0

atβ = 0 for the second case.
The system with the first HamiltonianH is the so-called first integrable case of the Henon–

Heiles system [1]. The second HamiltoniañH is related to the so-called Holt potential [1].
The system with the third Hamiltonian̂H may be considered as an integrable deformation of
the Kepler problem.

We can see that in practical circumstances the Stäckel approach is not very useful because
it is usually unknown which canonical transformations have to be used in order to transform a
Hamiltonian (2.9) to the natural formH = T + V . This problem was partially solved for the
uniform systemsUj = U, j = 1, . . . , nwith polynomial potentials by using the corresponding
Lax pairs [5]. In the following sections we shall restrict our attention to the uniform Stäckel
systems associated with the one hyperelliptic curveC = Cj (2.4).

3. Duality and the Abel map

Let us briefly recall some necessary facts about the Abel map and the inverse Jacobi problem.
The set of pointC(z, λ) satisfying

C: z2 = F(λ) =
2g+1∑
k=0

ekλ
k =

2g+1∏
j=1

(λ− λj ) (3.1)

is a model of a plane hyperelliptic curve of genusg. HereF(λ) is polynomial without multiple
zeros. Let us denote by Div(C) the Abelian divisor group and denote byJ (C) the Jacobian
of the curveC. The Abel map puts into correspondence the pointD ∈ Div(C) and the point
u ∈ J (C) [6, 7]

U : Div(C)→ J (C). (3.2)

The set of all effective divisorsD = γ1 + · · · + γn (γj may be not mutually distinct) of degn
of C is called thenth symmetric product ofC, and is denoted byC(n) = SnC. TheC(n) can be
identified with the set of all unorderedn-tuples{γ1, . . . , γn}, whereγj are arbitrary elements
of C. Now consider restriction of the Abel map (3.2) toC(n)

U : C(n)→ J (C) (3.3)

where

U(γ1, γ2 . . . , γn) = U(γ1) + U(γ2) + · · · + U(γn).
According to the Abel–Jacobi theorem this map is surjective and generically injective if
n = g only [6, 7]. If n 6= g the Abel map is either not uniquely defined or degenerate.
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The corresponding Stäckel system either has a dual system associated with the same curve or
is a superintegrable system [5].

Suppose that the pointD = γ1 + · · · + γn, n 6 g belongs toC(n). The differential of the
Abel–Jacobi map (3.3) at the pointD is a linear mapping from the tangent spaceTD(C(n)) of
C(n) at the pointD into the tangent spaceTU(D)(J (C)) of J (C) at the pointU(D)

U∗D: TD(C
(n))→ TU(D)(J (C)).

Now suppose thatD is a generic divisor andxj is a local coordinate onC near the pointγj . Then
(x1, . . . , xn) yields a local coordinate system near the pointD in C(n). Let dwk (k = 1, . . . , g)
be a basis for a spaceH1(C) of holomorphic differentials onC, and nearγj

dwk = φkj (xj ) dxj (3.4)

whereφkj (xj ) is holomorphic. The Abel–Jacobi mapU can be expressed nearD as

U(z1, . . . , zn) =
( n∑
j=1

∫ xj

γ0

φ1j (xj ) dxj , . . . ,
n∑
j=1

∫ xj

γ0

φgj (xj ) dxj

)
.

Hence

U∗D =

 φ11(γ1) · · · φg1(γ1)

...
. . .

...

φ1n(γn) · · · φgn(γn)

 (3.5)

is the so-called Brill–Noether matrix [8]. Henceforth, we shall restrict our attention to the
special divisorsDs , such that coefficients in the expansion (3.4) are independent on the point
γj

dwk = φk(xj ) dxj .

In this case all the rows of then × g homogeneous Brill–Noether matrix depend on local
coordinates{x1, . . . , xn} identically.

The Jacobi inversion problem (2.7) is formulated as follows: for a given pointu =
(β1, β2 . . . , βn) ∈ J (C) findn pointsγ1, γ2 . . . , γn on the genusg Riemann surfaceC such that

g∑
k=1

∫ γk

γ0

dwj = βj j = 1, . . . , n. (3.6)

Here we shall tacitly assume that the base pointγ0 ∈ C has already been fixed [6].
If n = g for almost all pointsu ∈ J (C) the solutionD = γ1 + · · ·+γn exist and is uniquely

determined by system (3.6) (for the unordered set of pointsγj ) [6]. However, if the degree
n < g of the symmetric productC(n) is less than genusg of C, the Abel map shows a lack of
uniqueness. In this case we can propose that two different pointsu, ũ ∈ J (C) have one Abel
preimage{γ1, . . . , γn} ∈ C(n).

The Abel preimage of the pointu ∈ J (C) is given by the set{(p1, q1), . . . , (pn, qn)} ∈ C(n),
where{q1, . . . , qn} are zeros of the Bolza equation [7, 9]

e(λ,u) = λn − λn−1℘n,n(u)− λn−2℘n,n−1(u)− · · · − ℘n,1(u) = 0 (3.7)

and{p1, . . . , pn} are equal to

pk = −∂e(λ,u)
∂βn

∣∣∣∣
λ=qk

. (3.8)
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Here the vectoru belongs to the JacobianJ (C) and℘k,j (u) is the Kleinian℘-function [7, 9].
Now we turn to the uniform Stäckel systems. We can regard each expression (2.4) as

being defined on the genusg Riemann surface

C: y2
j = F(λ) F (λ) =

n∑
k=1

αkskj (λ)− U(λ) (3.9)

which depends on the valuesαk of integrals of motion. For the Stäckel systems onR2n the
minimum admissible genusg of the curveC is equal tog = [(n− 1)/2].

Thenth symmetric product ofC defines then-dimensional Lagrangian submanifold in the
complete symplectic manifoldR2n

C(n): C(p1, q1)× C(p2, q2)× · · · × C(pn, qn). (3.10)

Then, the integration problem (2.6) and (2.7) for the equation of motion is reduced to the inverse
Jacobi problem (3.3) on the Lagrangian submanifold (3.10). The corresponding holomorphic
differentialsδwk are equal to

dwk = skj (λ) dλ

z(λ)
. (3.11)

The set of these differentials either forms a basis in the space of holomorphic differentials
H1(C) [6] or may be a complement to a basis. The correspondingn× n Sẗackel matrix be the
n× n block of the transpose Brill–Noether matrixU∗tD .

The different blocks are determined by the dual Stäckel systems. In this case vectors
differing in the first entry only

u = {t, β2, . . . , βn} ∈ J (C) ũ = {t̃ , β2, . . . , βn} ∈ J (C)
have a common Abel preimage{(p1, q1), . . . , (pn, qn)} ∈ C(n).

Let us consider the standard basis of holomorphic differentials inH1(C)

dwk = λk−1

z(λ)
dλ k = 1, . . . , g. (3.12)

Recall, that the derivativeU∗D bears a great resemblance to the canonical mapC → Pg−1 and,
therefore, to the Veronese mapP1→ Pg−1 given by a basis for the polynomial ring of degree
g − 1. With respect to the basis ofH1(C) (3.12), the Veronese map ofC has an extremely
simple expression

(y, λ)→ λ→ [λg−1, λg−2, . . . , λ,1].

By using the corresponding homogeneous Brill–Noether matrixU∗D (3.5), we shall determine
the Sẗackel matrices as (n× n) blocks of the following (g × n) matrix:

q
g−1
1 q

g−1
2 · · · q

g−1
n

q
g−2
1 q

g−2
2 · · · q

g−2
n

...
. . .

...
...

1 1 · · · 1

. (3.13)

Evidently, all the Sẗackel matrices cannot be obtained from the homogeneous Brill–Noether
matrices. For instance, the Stäckel matrices (2.10) are non-homogeneous matrices.
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4. Lax representation

Henceforth, we shall restrict our attention to the basis (3.12) and the homogeneous matrix
(3.13). For the corresponding Stäckel systems let us look for the Lax representation as

L =
(
h(λ, p, q) e(λ, q)

f (λ, p, q) −h(λ, p, q)
)
. (4.1)

Let us fix the hyperelliptic genusg curveC and the dimension of the phase spacen 6 g.
Then we extract the (n× n) Sẗackel matrixS from the matrix (3.13) and define the Hamilton
functionH (2.9) withU = 0. Next we define the functione(λ,u) (3.7)

e(λ, q) =
n∏
j=1

(λ− qj ) (4.2)

with n zeros, which are solutions of the inverse Jacobi problem. Then we introduce the second
entry of the Lax matrix as

h(λ) = − 1

2v(λ, q)

de(λ)

dt
+w(λ, p, q) e(λ).

Here the functionv(λ, q) is calculated by using the second Bolza equation (3.8)

h(λ)|λ=qk = pk =
(

1

2v

de(λ)

dt

)
λ=qk
= −∂e(λ)

∂un

∣∣∣∣
λ=qk

. (4.3)

Let the third entry of the Lax matrix takes the form

f (λ) = 1

v

dh(λ)

dt
.

Here the single unknown functionw(λ, p, q) is determined such that the spectral curve of the
Lax matrix (4.1)

C: z2 = F(λ) = −detL0(λ) = h2(λ) + e(λ)f (λ) (4.4)

be the same as the initial algebraic curveC (2.4) byU = 0.
The above constructed matrixL0(λ) (4.1) reads as

L0(λ) =

 −
1

2v
et (λ) +w(λ, p, q) e(λ) e(λ)

1

v
ht (λ)

1

2v
et (λ)− w(λ, p, q) e(λ)

 (4.5)

where

et = de(λ)

dt
= {H, e(λ)} ht = dh(λ)

dt
= {H, h(λ)}

obeys the Lax equation

dL0

dt
= {H,L0} = [A0, L0]

with the second matrix

A0 = v(λ, q)
(
w(λ, p, q) 1

0 −w(λ, p, q)
)
.
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By definition of the Lax matrix all the pairs of separation variablesγj = (pj , qj ) (4.2) and
(4.3) lie on the spectral curveC (4.4) of the matrixL0 (4.5)

z2(γj ) = p2
j = h2(λ)

∣∣
λ=qj = F(λ = qj ) = F(λ)

∣∣
γj
.

For the systems with the polynomial potentialU 6= 0 we propose to change the entryf (λ) in
(4.5)

f (λ) = 1

v

dh(λ)

dt
+ u(λ, q) e(λ)

where we add a new functionu(λ, q) depending on coordinates only. Of course, to construct
the Lax matrix here

L(λ) =

 −
1

2v
et (λ) +w(λ, p, q) e(λ) e(λ)

1

v
ht (λ) + u(λ, q) e(λ)

1

2v
et (λ) +w(λ, p, q) e(λ)

 (4.6)

we have to use the complete Hamiltonian withU 6= 0. The associated second Lax matrix
reads as

A = A0 +

(
0 0

v(λ, q)u(λ, q) 0

)
= v(λ, q)

(
w(λ, p, q) 1
u(λ, q) −w(λ, p, q)

)
. (4.7)

To consider the corresponding Lax equation

dL(λ)

dt
= [A(λ), L(λ)]

we can assume that the common factorv(λ, q) in front of the matrixAmay be associated with
the change of the time for the Stäckel systems.

In general, the proof of existence functionsv, w andu requires an application of the
method of algebraic geometry [7]. By definition of the Lax matricesL(λ) (4.6) andA(λ) (4.7)
this problem may be reduced to the solution of the single equation

df (λ)

dt
− 2v(uh− wf ) = 0 ⇐⇒ dF(λ, e, v, u)

dt
= 0 (4.8)

for the given functione(λ) (4.2) and the given HamiltonianH (2.9).
If we consider the lower (n × n) block of the matrix (3.13), the differentials (3.11) span

a whole spaceH1(C) and the Abel map is the one-to-one correspondence. In this case from
equations (3.8) and (4.3) follows that

vt (λ, q) = 0 w(λ, p, q) = 0.

If we putv = 1, renamet = x and introduce a ‘new’ time variableτ , equation (4.8) is rewritten
as

∂u(x, τ, λ)

∂τ
= [ 1

4∂
3
x + u(λ)∂x + 1

2ux(λ)
] · e(λ) = 0 x = t. (4.9)

This equation may be identified with the equation for the finite-band stationary solutions
∂u(x, τ, λ)/∂τ = 0 of the nonlinear soliton equations. In this theory equation (4.9) is called
the generating equation. For different choices of the form ofe(λ) andu(λ), this procedure
leads to different hierarchies of integrable equations, as an example for the KdV, nonlinear
Schr̈odinger and sine–Gordon hierarchies or to the Dym hierarchy (see references in [5]).
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Functionu(λ, q) in (4.9) is constructed by using the functione(λ) (3.7)–(4.2),

u(λ, q1, . . . , qn) =
[
φ(λ) e−2(λ)

]
MN
. (4.10)

Here φ(λ) is a parametric function on the spectral parameter and [ξ ]N are the linear
combinations of the following Taylor projections:

[ξ ]N =
[ +∞∑
k=−∞

zkλ
k

]
N

≡
N∑
k=0

ξkλ
k (4.11)

or the Laurent projections [5, 11].
If the differentials (3.11) span the whole spaceH1(C) the corresponding Stäckel systems

describe all the possible systems, which are separable in the orthogonal curvilinear coordinate
systems inRn [5]. Let us consider the Stäckel systems which are dual to these systems. To
apply equation (2.12) to the functione(λ) (4.2) and by using definition (4.3) one obtains

pk = h̃(λ)
∣∣
λ=qk =

(
− 1

2ṽ
{H̃ , e(λ)}

)
λ=qk
= detS

detS̃

(
− 1

2ṽ
{H, e(λ)}

)
λ=qk

= detS

detS̃

(
v

ṽ
h(λ)

)
λ=qk
= pk detS

detS̃

(
v

ṽ

)
λ=qk

. (4.12)

Recall thatv = 1 for the integrable system with the HamiltonianH associated with the lower
(n× n) block of the matrix (3.13).

Thus, according to (4.12), below we shall consider the Stäckel systems with the following
functionsv(q) only:

v(q) = detS(q1, . . . , qn)

detS̃(q1, . . . , qn)
.

Let us briefly discuss the canonical transformation which transforms a Hamiltonian (2.9)
into the natural formH = T +V . For integrable systems separable in the orthogonal curvilinear
coordinate systems onRn the Abel map is in one-to-one correspondence andvt = {H, v} = 0.
In this case we can putv = 1 and introduce the functionB(λ),

B2(λ) = e(λ) (4.13)

which was proposed in the theory of the soliton equations [10]. It allows us to rewrite the
generating function of the integrals of motion,

F(λ) = −B3Bt t + u(λ, q)B4 (4.14)

as a Newton equation for the functionB

B̈(λ, q) = −F(λ, α1, . . . , αn)B−3(λ, q) + u(λ, q)B(λ, q). (4.15)

To expand the functionB(λ) on the Laurent set

B =
N∑
j=0

xjλ
j

it is easy to prove that the coefficientsxj obey the Newton equation of motion (4.15) (see
references within [5, 10]). Here we reinterpret the coefficients of the functionF(λ) in (4.15)
not as functions on the phase space, but rather as integration constantsαj (2.3).
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In general, byvt 6= 0 the generating functionF(λ) = −detL(λ) (4.6) is equal to

F(λ) = 1

4v2

(
e2
t − 2eett

)
+

(
vt

2v2
− w

)
ete

v
+

(
w2 +

u

v

)
e2.

In this case the suitable canonical transformations, which transform any Hamiltonian (2.9) into
the natural form, are unknown.

Although we cannot prove the validity of the presented Lax representation in general,
this construction works for the many well known mechanical systems. In the next section we
consider some two-dimensional Stäckel systems with homogeneous Stäckel matrices in detail.

5. Examples

Let us consider four orthogonal systems of coordinates on a plane: elliptic, parabolic, polar and
Cartesian. The Lax matrixL0(λ) (4.5) byU = 0 is transformed to the Lax matrixL(λ) (4.6) by
U 6= 0 by using the outer automorphism of the space of infinite-dimensional representations of
the underlying algebrasl(2) [5, 11]. We shall consider the Lax representations for the geodesic
motion byU = 0 more extensively.

5.1. Parabolic and Cartesian coordinate systems (w(λ, p, q) = 0)

Let us consider two hyperelliptic curves,

C(1): z2 =
2g+1∏
i=1

(λ− λi)

C(2)2: z2 = λ−1
2g+1∏
i=1

(λ− λi).
(5.1)

If we choose the standard basis in the space of holomorphic differentials one obtains the
following homogeneous matrices (3.13) for two-dimensional systems:

U∗t1 (q1, q2) =


q
g−1
1 q

g−1
2

...
...

q2
1 q2

2

q1 q2

−1 −1

 U∗t2 (q1, q2) =



q
g−2
1 q

g−2
2

...
...

q1 q2

1 1

− 1

q1
− 1

q2


. (5.2)

Different (2× 2) blocks of the matricesU∗tj determine different Stäckel systems.
Let us consider two blocks for the each matrix. So, for the curveC(1) we shall consider

the following matrices:

S1 =
(
q1 q2

−1 −1

)
S̃1 =

(
q2

1 q2
2

−1 −1

)
. (5.3)

For the second curveC(2) the associated Stäckel matrices are equal to

S2 =
 1 1

− 1

q1
− 1

q2

 S̃2 =
 q1 q2

− 1

q1
− 1

q2

. (5.4)
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Introduce the Hamilton functions (2.9) byU = 0

H
(1)
0 =

p2
1 − p2

2

q1− q2
H̃
(1)
0 = (q1 + q2)

−1H
(1)
0

H
(2)
0 =

q1p
2
1 − q2p

2
2

q1− q2
H̃
(2)
0 = (q1 + q2)

−1H
(2)
0 .

(5.5)

The corresponding second integrals of motion of the dual systems are related

J̃
(k)
0 = J (k)0 −

q1q2

q1 + q2
H
(k)
0 k = 1, 2.

The functionse(λ,u) (3.7)

e1(λ) = (λ− q1)(λ− q2) e2(λ) = (λ− q1)(λ− q2)

λ
(5.6)

have two zeros, which are solutions of the inverse Jacobi problem (2.7) onC(1) and C(2),
respectively.

Let us introduce new physical variables. For the first curveC(1) equation (4.15)

e1(λ) = (λ− q1)(λ− q2) = B2(λ) B(λ) = λ− x
2
− y

4λ
yields the following canonical transformation:

q1 = 1
2(x −

√
2y) p1 = px −

√
2y py

q2 = 1
2(x +

√
2y) p2 = px +

√
2y py.

For the second curveC(2) the corresponding equation

e2(λ) = λ−1(λ− q1)(λ− q2) = λ− x − y2

4λ
defines the standard parabolic coordinate system

q1 = x −
√
x2 + y2

2
p1 = px −

√
x2 + y2 + x

y
py

q2 = x +
√
x2 + y2

2
p2 = px +

√
x2 + y2 − x

y
py.

By U = 0 the Hamilton functions are given by

H
(1)
0 = 4pxpy H

(2)
0 = p2

x + p2
y.

According to (4.3) and (4.12) functionsv(q1, q2) entering in the Lax representation are equal
to

v(λ, q1, q2) =


1 for matrices S1,2

(q1 + q2)
−1 = 1

x
for matrices S̃1,2.

(5.7)

In physical variables the Lax matrices are given by

L
(1)
0 =

(
px + (2λ− x)py λ2 − λx + 1

4(x
2 − 2y)

−4p2
y −px − (2λ− x)py

)

L
(2)
0 =

 px +
1

2λ
ypy λ− x − 1

4λ
y2

1

λ
p2
y −px − 1

2λ
ypy

.
(5.8)
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For the dual Sẗackel systems the Lax matricesL̃(1,2)0 have the form

L̃
(1)
0 = L(1)0 +

 0 0

4
pxpy

x
0

 = L(1)0 + H̃ (1)
0

(
0 0
1 0

)

L̃
(2)
0 = L(2)0 +

 0 0

p2
x + p2

y

x
0

 = L(1)0 + H̃ (2)
0

(
0 0
1 0

)
.

(5.9)

By using the property{ht (λ), v(q)} = 0 of the functionv(q) (5.7) we can easily prove
equation (4.8) for the dual systems by using the same equation for the system withvt = 0

f̃t = {H̃ , f + H̃ } = ft = 0.

Another consequence of this property is that the functionw(λ, p, q) in (4.5) is equal to zero.
The spectral curves of the matricesL0 (5.8) coincides with the initial curvesC(1,2)0 (2.4)

atU = 0

z2 = H(1)
0 λ + J (1)0 z2 = H(2)

0 +
J
(2)
0

λ
. (5.10)

HereJ (1,2)0 are the second integrals of motion (2.2). For the dual systems with the Hamilton
functionsH̃ (1,2)

0 the corresponding spectral curves are equal to

z2 = H̃ (1)
0 λ2 + J̃ (1)0 z2 = H̃ (2)

0 λ +
J̃
(2)
0

λ
. (5.11)

If for the system with the HamiltonianH(1)
0 the Abel map is in one-to-one correspondence on

the curve (5.10), then for the same system on the curve

z2 = e2λ
2 + e1λ + e0

the associated Abel map is not uniquely defined in general. So, on this curve we can introduce
the second Stäckel system with the dual HamiltoniañH(1)

0 .
Let us briefly consider systems with polynomial potentialsU 6= 0. As an example, we

introduce different potentials for the curvesC(1,2) (5.1)

U(1)(qj ) = α2q5
j + βq3

j U(1)(qj ) = α2q3
j + βqj . (5.12)

To describe these potentials we have to putN = 6 and 4 in (4.11) and have to use the following
parametric functions:

φ(1)(λ) = −α2λ5 and φ(2)(λ) = −α2λ3

for the curvesC(1) andC(2), respectively. For both curves the common functionu(λ, q1, q2) is
given by

u(1,2) = −α2(λ + 2x). (5.13)

Here we restrict ourselves to the presentation of the functionu only, the complete Lax matrices
L(λ) may be constructed by the rule (4.6).

The spectral curves of the corresponding matrices (4.6) coincide with the initial curves
(3.9). For instance, curves for the systems with dual HamiltoniansH̃ (1,2) are

C(1): z2 = α2λ5 + βλ3− H̃λ− J̃

C(2): z2 = α2λ3− H̃λ + β − J̃
λ
.
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The Poisson bracket relations for the Lax matrix (5.8) and (5.9) are closed into the following
linearr-matrix algebra:

{ 1
L(λ),

2
L(µ)} = [r12(λ, µ),

1
L(λ)] − [r21(λ, µ),

2
L(µ)]

r21(λ, µ) = −5r12(µ, λ)5.

(5.14)

Here the standard notations are introduced:

1
L(λ) = L(λ)⊗ I 2

L(µ) = I ⊗ L(µ)
and5 is the permutation operator of auxiliary spaces [12].

At vt = 0 for the systems related to the matricesS1,2 the correspondingr-matrices
rij (λ, µ) in (5.14) may be factorized

rij = rpij + ruij . (5.15)

The first matrix is a standardr-matrix on the loop algebraL(sl(2))

r
p

12(λ, µ) =
5

λ− µ =
1

λ− µ


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

. (5.16)

The second matrix may be associated with outer automorphism of the space of infinite-
dimensional representations of the underlying algebrasl(2) [5, 11]. The corresponding
dynamicalruij -matrices depend on the coordinates only

ru12 =
u(λ, q)− u(µ, q)

λ− µ σ− ⊗ σ− σ− =
(

0 0
1 0

)
. (5.17)

At vt 6= 0 for the dual Sẗackel systems related to the matricesS̃1,2 we have to add to the
r-matrices (5.15) the third term

rv12 = v(q1, q2)


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

. (5.18)

This matrixrvij may be connected with the Drinfeld twist for the Toda lattice associated with
the root systemDn. Let us consider the Drinfeld twist [13] of the quantumR-matrix

R̃ = FRF−1
21 F21 = 5F5. (5.19)

Here the matrixR satisfies the Yang–Baxter equation and the matrixF has the special property
[13]. To introduce the corresponding linearr-matrix [14], one obtains

R = I + 2ηrp + O(η2) F = I + ηrv + O(η2).

Then we consider the limit of the twisted matrix̃R by η→ 0

R̃12 = I + η
(
r
p

12 + rv12−5(rp12 + rv12)5
)

+ O(η2). (5.20)

Formally, coefficients byη may be called the twisted linearr-matrix.
By using generatorsh, e, f of the underlying Lie algebrasl(2)

[h, e] = 2e [h, f ] = −2f [e, f ] = h (5.21)
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let us introduce an appropriate elementF ∈ U(sl(2))⊗ U(sl(2))
Fξ = exp(ξ · e⊗ f) ξ ∈ C

from the tensor product of the corresponding universal enveloping algebrasU(sl(2)) [13]. In
the fundamental spin-1

2 representationρ1/2 we have

F(ξ) = (ρ1/2⊗ ρ1/2)Fξ =


1 0 0 0
0 1 0 0
0 ξ 1 0
0 0 0 1

.
To substitute in (5.19) the Yang solution of the Yang–Baxter equationR = I + (η/λ)5 we
obtain a twistedR-matrix. If the elementξ(q) is a suitable function on coordinates, this
dynamical twistedR-matrix may be used to describe the Toda lattice associated with theDn
root system [15].

Let us consider the twisted dynamical matrix (5.19) atξ = v(q). We can see that the
linearr-matrix associated with the dual Stäckel system (5.16)–(5.18)

r12 = rp12 + rv12 r21 = −5(rp12 + rv12)5

is equal to half of the twisted linear matrix (5.20).
Recall, for the Sẗackel matricesS1 (5.3) andS2 (5.4) that the corresponding differentials

(3.11) spanH1. The associated Hamilton functions have a natural form in physical variables.
For instance, Hamiltonians with potentials (5.12) are given by

H(1) = 2pxpy + 1
4α

2(y2 + 5x2y + 5
4x

4) + 1
2β(

3
2x

2 + y)

H (2) = 1
2p

2
x + 1

2p
2
y + 1

2α
2x(2x2 + y2) + β.

(5.22)

To consider the dual Stäckel systems we have to use the additional transformation

x =
√

2x̃ px = p̃x
√

2x̃ (5.23)

for the first curve and the following more complicated transformation:

x = 3
2 x̃

2/3 px = p̃x x̃1/3

y =
√

2

3

p̃y

α
py = −

√
3

2
αỹ

(5.24)

for the second curve. After this canonical change of variables the HamiltoniansH̃ (1,2) (5.5)
obtain the natural form

H̃ (1) = 2p̃xpy +
α2(y2 + 10yx̃ + 5x̃2)

8

√
2

x̃
+
β(3x̃ + y)

4

√
2

x̃

H̃ (2) = 1
2(p̃

2
x + p̃2

y) + 3
4α

2x̃−2/3( 9
2 x̃

2 + ỹ2) + βx̃−2/3.

(5.25)

The system with the HamiltonianH(2) is the so-called second integrable case of the Henon–
Heiles system [1]. The dual system with the HamiltonianH̃ (2) is the so-called Holt-type
system [1].

An additional canonical transformation (5.24) allows us to obtain natural Hamiltonians
for the restricted class of potentialsU (5.12) only. Unlike the canonical transformation (5.23)
may be used for any potentialsU . As an example, the rational potential

U(q) = α

q2
+
β

q
+ γ q + δq2 + ρq4



Duality between integrable Stäckel systems 7979

gives rise to the following Hamiltonian:

H̃ = 2p̃xpy − 4α

(x̃ − y)2 −
β

x̃ − y

√
2

x̃
+
γ

4

√
2

x̃
+

1

2
δ +

ρ

2
(x̃ + y).

Also we can add potential terms (5.25) to this Hamiltonian.
At v = 1 andw = 0 the Lax representation (4.5) for a system with an arbitrary number

n of degrees of freedom may be regarded as a generic point at the loop algebraL(sl(2)) in
the fundamental representation after an appropriate completion [5]. As an example, for the
generalized parabolic coordinate systems functione(λ) is given by

e(λ) =
∏n
j=1(λ− qj )∏n−1
k=1(λ− δk)

= λ− xn +
n−1∑
k=1

x2
k

4(λ− δk) δk ∈ R.

To construct the Lax representation for a potential motion we can use the outer automorphism
of the space of infinite-dimensional representations ofsl(2) proposed in [11].

At vt 6= 0 for the dual Sẗackel systems the Lax representations may be constructed without
any problem as well. For instance, let us consider a system with three degrees of freedom. To
construct the Lax matrix (4.5) and (4.6) with the functionu given by (5.13) one obtains

e(λ) = λ− x − y
2

λ
− z2

4(λ− k) k ∈ R

H̃ = 1

x

(
p2
x + p2

y + p2
z + 1

4a
2kz2

)
+ 1

2a
2
(
2x2 + y2 + z2

)
.

After an additional canonical transformation (5.24) extended on thepz, z variables the
Hamilton function takes the form

H̃ = p̃2
x + p̃2

y + p̃2
z

(
1 + 1

3kx̃
−2/3

)
+ 3

8αx̃
−2/3

(
9
2 x̃

2 + ỹ2 + z̃2
)
.

So, the main unsolved problem is to introduce an additional canonical transformation, which
transforms the dual Hamilton functioñH into the natural form.

5.2. Elliptic and polar coordinates (w(p, q) 6= 0)

Recall, that the polar coordinate system may be obtained from elliptic coordinate system and,
therefore, we shall consider elliptic coordinate systems in detail.

For the elliptic coordinate systems the algebraic curve is given by

C(3) z2 =
∏2g+1
i=1 (λ− λi)

(λ− k)(λ + k)
k ∈ C.

Let us consider two Stäckel matrices associated with this curve

S3 =


q1

q2
1 − k2

q2

q2
2 − k2

1

q2
1 − k2

1

q2
2 − k2

 S̃3 =


4q2

1

q2
1 − k2

4q2
2

q2
2 − k2

1

q2
1 − k2

1

q2
2 − k2

. (5.26)

For the polar coordinate system the Stäckel matrices are non-homogeneous matrices

S4 =

 1 0

1

q2
1

1

4(q2
2 − k)

 S̃4 =

 q2
1 0

1

q2
1

1

4(q2
2 − k)

. (5.27)



7980 A V Tsiganov

At U = 0 the initial hyperelliptic curves (3.9) for the matricesS3 andS̃3 are given by

z2 = H0λ + J

λ− k2
z2 = 4H̃0λ

2 + J̃0

λ− k2
(5.28)

with the following Hamiltonians:

H
(3)
0 =

p2
1(q

2
1 − k2)− p2

2(q
2
2 − k2)

q1− q2
H̃
(3)
0 =

1

4(q1 + q2)
H. (5.29)

The Hamiltonians related to the matricesS4 andS̃4 read as

H
(4)
0 = p2

1 − 4
q2

2 − k
q2

1

p2
2 H̃

(4)
0 = q−2

1 H
(4)
0 . (5.30)

Let us fix elliptic coordinates by using the equation

e(λ) = (λ− q1)(λ− q2)

(λ− k)(λ + k)
= 1− x2

4(λ− k) −
y2

4(λ + k)

such that

q1 = 1
8(x

2 + y2) + 1
2

√
(x2 + y2)2 + 16k(x2 − y2) + 64k2

q2 = 1
8(x

2 + y2)− 1
2

√
(x2 + y2)2 + 16k(x2 − y2) + 64k2.

The corresponding equation for the polar coordinates

e(λ) = q1(λ− q2)

λ(λ− 1)
= x2

4λ
+

4y2

λ− 1

immediately yields

q1 = r =
√
x2 + y2 q2 = cos2(φ) = x2

x2 + y2
.

In physical variables the Hamiltonians (5.29) and (5.30) have a common form

H = p2
x + p2

y H̃ = p2
x + p2

y

x2 + y2
.

To construct the Lax representations we begin with the calculations of the functionsv(λ, q)

by the rule (4.3)–(4.12)

v =


1 for matrices S3,4

1
4(q1 + q2)

−1 = 1

x2 + y2
for matrix S̃3

1

q2
1

= 1

x2 + y2
for matrix S̃4.

(5.31)

So, for the Sẗackel systems associated with the matricesS3 (5.26) andS4 (5.27) one obtains

L0(λ) =


xpx

2(λ− k) +
ypy

2(λ + k)
ελ− x2

4(λ− k) −
y2

4(λ + k)

p2
x

λ− k +
p2
y

λ + k
− xpx

2(λ− k) −
ypy

2(λ + k)

. (5.32)

Hereε = 1 for the elliptic coordinate system andε = 0 for the parabolic coordinate system.
The spectral curve of the Lax matrixL0(λ) coincides with the initial curve (5.28).
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For the dual systems, in contrast to the Cartesian and parabolic coordinates, the Lax
matrices have a more complicated form. Both these Lax matrices may be constructed by the
rule (4.6) with the following common functionw(p, q):

w(p, q) = 2
√
H̃ . (5.33)

The Lax matrix reads as

L̃0(λ) = L0(λ) +

(
we(λ) 0

−2w[h(λ)− we(λ)− εw] −we(λ)
)

ε = 0, 1. (5.34)

Heree(λ) andh(λ) are entries of the corresponding matricesL0(λ) (5.32) atε = 0, 1. As
above, the spectral curve of the Lax matrixL̃0(λ) at ε = 1 coincides with the initial curve
(5.28).

For the Cartesian and parabolic coordinate systems we can obtain the equation{{
H, v−1(q)

}
e(λ, q)

} = {{H, (q1 + q2)}e(λ, q)} = 2

on the HamiltonianH , the functionse(λ) andv(q) define the change of time. For the polar
and elliptic coordinate systems the corresponding equation is{{

H, v−1(q)
}
e(λ, q)

} = 8(e(λ)− ε) ε = 0, 1.

Hence, from equation (4.8) it follows that the functionw(p, q) in (4.5)–(5.33) does not equal
zero. If we consider a more complicated change of the time for the Cartesian and parabolic
coordinate systems, one obtains a non-zero functionw (4.5) as well.

The Poisson bracket relations for the Lax matrixL0(λ) (5.32) are closed into the standard
linear r-matrix algebra (5.14) with the rationalr-matrix (5.16) on the loop algebraL(sl(2))
[12].

The Poisson bracket relations for the dual Lax matrixL̃0(λ) (5.34) have a polylinear form{ 1
L(λ)

2
L(µ)

}
=
[
r12

1
L(λ)

]
+
[
r21

2
L(µ)

]
+R

1
L(λ)

2
L(µ) +

1
L(λ)

2
L(µ)R − 1

L(λ)R
2
L(µ)− 2

L(µ)R
1
L(λ).

Here the linearr-matrix reads as

r12(λ, µ) = rp12(λ− µ) + 4εrw12 r21(λ, µ) = −5r12(λ, µ)5

whererp(λ − µ) is the standard linearr-matrix on the loop algebraL(sl(2)). The second
dynamical term is given by

rw12 = v(q)


0 0 0 0
0 0 0 0
w 1 0 0
0 −w 0 0

.
The quadraticR-matrix is closed to the twisted linearr-matrix (5.20)

R = − 2

w

(
rw12 + rw21

) = − 2

w

(
rw12−5rw125

)
.

At U 6= 0 functionsu(λ, q) may be constructed as usual [5, 11]. Note, that both dual
Hamiltonians obtain a natural form after the following additional canonical transformation of
variables:

x =
√
x̃ −

√
ỹ px =

√
x̃p̃x −

√
ỹp̃y

y = −i(
√
x̃ +

√
ỹ) py = i(

√
x̃p̃x +

√
ỹp̃y).



7982 A V Tsiganov

As an example, for an elliptic coordinate system the uniform potential

U(3)(qj ) = αq2
j + βqj

gives rise to the following dual Hamiltonian:

H̃ = 2p̃xp̃y +
α

4
(x̃ + k)(ỹ + k)− β

8
√
x̃ỹ
(2x̃ỹ + kx̃ + kỹ).

For the polar coordinate system we present the non-uniform degenerate potentials

U
(4)
1 (q1) = β U

(4)
2 (q2) = 0

associated with the following dual Hamiltonian:

H̃ = p̃xp̃y

2
− β

(
16√
x̃ỹ

+
1

x̃
+

1

ỹ
− 2

x̃ỹ

)
.

Both of these systems may be considered as integrable deformations of the Kepler problem.

6. Conclusions

In this paper we have considered relations between the different Stäckel systems. The proposed
change of the time is related to the ambiguity of the Abel map for the hyperelliptic curves. Of
course, a particular family of such transformations (2.8) does not exhaust the set of canonical
changes of time, which preserve integrability. As an example, the Kolosoff transformation
{t, p, q} → {t̃ , p̃, q} [2] connects the Stäckel system with the other integrable non-Stäckel
system. So, it would be interesting to investigate integrable systems connected with the Stäckel
systems by canonical transformations of time.
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Sẗackel P 1895Comptes Rendus121489

[4] Arnold V I 1989Mathematical Methods of Classical Mechanics2nd edn (Berlin: Springer)
[5] Tsiganov A V 1999J. Math. Phys.40279
[6] Dubrovin B A 1981Russ. Math. Surveys3611
[7] Buchstaber V M, Enolskii V Z and Leykin D V 1997Kleinian Functions, Hyperelliptic Jacobians and

Applications (Reviews in Mathematics and Mathematical Physics vol 10)(London: Gordon and Breach)
pp 1–125

[8] Noether M 1887Math. Anal.28354
[9] Bolza O 1895Am. J. Math.1711

[10] Rauch-Wojciechowski S 1988Phys. Lett.A 17091
[11] Tsiganov A V 1998J. Math. Phys.39650
[12] Faddeev L D and Takhtajan L A 1987Hamiltonian Methods in the Theory of Solitons(Berlin: Springer)
[13] Khoroshkin S, Stolin A and Tolstoy V 1996From Field Theory to Quantum Groupsed B Jancewicz and J Sobczyk

(Singapore: World Scientific) p 53–77
[14] Tsiganov A V 1994J. Phys. A: Math. Gen.276759
[15] Tsiganov A V 1998J. Phys. A: Math. Gen.318049


