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Abstract. Canonical transformations of the extended phase space are applied to the integrable
Stackel systems. All these transformations may be associated with an ambiguity of the Abel map
on the corresponding hyperelliptic curve. For soméckeél systems with two degrees of freedom

the 2x 2 Lax representations and the dynamicahatrix algebras are constructed.

1. Introduction

On the Z-dimensional symplectic manifold/ (phase space) with coordinatgs;, ¢;};_,

let us consider a Hamiltonian system with some Hamilton funcfitip, ¢g). To consider

canonical transformations of the tinre we add a new coordinatg,.;, = ¢ with the

corresponding momenta,.; = H to the initial phase spac&1. The resulting(2n + 2)-

dimensional spac#1 is the so-called extended phase space of the given Hamiltonian system.
By definition canonical transformations of the extended phase spécereserve the

differential formQ = Z;’;ll p;j dg; and the Hamilton—-Jacobi equation

5
S i H=o (1.1)
a1

Such transformations have the following form:
t> 1 di = v (p,q)dr (1.2)
H+— H=v(p, ¢q)H. (1.3)

Itis known that any canonical transformation of the initial phase spdaeeaps any integrable
system into the other integrable system. We do not have a regular way to obtain a canonical
transformation of the extended phase sp&tg, which maps a given integrable system into

the other integrable system.

Inthis paper for the Sickel system we introduce canonical transformations of the extended
phase space associated with the ambiguity of the Abel map on the hyperelliptic curve. For some
Stackel systems we propose Lax pairs antiatrix algebras. As examples the Henon—Heiles
systems, integrable Holt potentials and the integrable deformations of the Kepler problem are
discussed in detail.
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2. Duality between the Séckel systems

The systems associated with the name &t&el [3] are holonomic systems on the phase space
R?" equipped with the canonical variablgs;, q;}j—1, with the standard symplectic structure
Q,, and with the following Poisson brackets:

Q, :Zd[)j/\dqj {pj,qx} =i (2.1)
=1

The non-degeneratex n Stackel matrixS, whose; columns,; depends only og;

a .
detS £ 0 985 _ g ji#m
dGm
defines: functionally independent integrals of motion
L= et ) = 22
= A 7 detS

which are quadratic in momenta. Hefe= [c;;] denotes an inverse matrix 1 and.Sy; is
the cofactor of the elemenj;. The common level surface of the integrals (2.2)

My={zeR": (2) =ax.k=1,...,n} (2.3)
is diffeomorphic to the:-dimensional real torus and one immediately obtains
S 2 n
pf = (8_> = Zakskj(t]j) —U;(g;)). (2.4)
4j =1

HereS(qs1 ..., g.) is a reduced action function [4].
The corresponding Hamilton—Jacobi equatiomén(1.1) admits the variable separation

S(q1---aQn)=ZSj(Qj) Sj(Qj)=/\/Fj(61j)dCIj~ (2.5)
j=1
Here the functiong”; (1) depend om parameterso; };_,

F]()\) = (xkskj()\) - UJ()\.)

n
k=1

By definition the first integral; = H is the Hamilton function associated with the time
Hence, coordinateg; (¢, a1, . . ., o,) are determined from the equation explicitly depending
on time

n vi(pj-q;) (A) da
¥0(po.qo) \/ZZ:1 ags1j(A) — U;(d)

and fromn — 1 other equations
n /]//'(Pi"b') Skj()\) da
70(Po.90) \/ZZzl o sk (A) — U; (L)

The solution of the problem is thus reduced to solving a sequence of one-dimensional problems.
Now we turn to the canonical change of the time and prove the following.

j=1

=B  k=2...n. 2.7)

j=1
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Proposition 1. If the two Séckel matricess and S can be distinguished in the first row only
Skj = gkj k 75 1
the corresponding &tkel systems with the following Hamilton functions:

_ detS(q1, ..., qn)
detS(q1, .-, qn)
are related by a canonical change of the time.

H=v(@QH v(q) (2.8)

In fact, the Hamilton function&/ andH obey equation (2.8), which follows from the definition
of the Hamiltonian,

H=Y cu(p?+U;4)) (2.9)
=1

and the definition of the inverse matrix with entries
Sy 1 9detS

T detS ~ detS asy;

In contrast with the general coupling constant metamorphosis [1] equation (2.8) is independent
on any constant in the potentiél.
As an example, let us consider three matrices

(1 1 s (1 a2 =~ (4 4
s=(1 1) s=(vm) so(% %) o0

The corresponding Hamiltoniars, H and H defined by (2.9) are dual

Cj]_

H=3q+q) 'H

+qo ~ 2.11
q; q22 i (2.11)
91+ 43
For any functiorf (¢) depending on coordinates only one obtains the following transformations
of the time:

H=3i+q) "H =

%@ _ g5 _1 1 I - 10D
i {H,&(q)} = 5(q1+q2) {H,&(q)} = Nt an) G (2.12)
The uniform cubic potential
U(g)) = 20%¢3 + Bq% +yq; +8 (2.13)

gives rise to the Hamiltonia®
H = 3(pf+p3) +a?(qi +43) + 387 +a3) + 37 (qu+q2) +3. (2.14)
By using the canonical transformation
q1=3(x+y) p1=px Dy
q2=3(x—y) P2 =Pp:— Dy
for the first system, the more complicated transformation

(2.15)

3 553 Dy 3o
_ 223, Py S Vi B
q1 4x 3 P1= PxX 2 y
3 p 3o
612=ZX2/3——3“V P2=Pxx1/3+—2 y
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for the system associated wighand the following change of variables in the third case:
412\/_—ﬁ P1=Pm/_—l7yﬁ
g2 = —i(Vx +/y) P2 = i(px/x + py/x)

one obtains the Hamilton functions in the natural form

H = 3(p2+p2) + 30°x(x* +3y%) + 2B(x> + %) + Jyx +§

H = %(pf + p)z,) + §a2x72/3(3x2 + y2) +8x 2%+ %y onlyby =0
~ 1 g 1 y(1l+i 1-—i
2P 2.\/xy 4<«/9_C ﬁ) Yoo

atB8 = 0 for the second case.

The system with the first Hamiltonidh is the so-called first integrable case of the Henon—
Heiles system [1]. The second Hamiltoniahis related to the so-called Holt potential [1].
The system with the third Hamiltonial may be considered as an integrable deformation of
the Kepler problem.

We can see that in practical circumstances tlael&tl approach is not very useful because
it is usually unknown which canonical transformations have to be used in order to transform a
Hamiltonian (2.9) to the natural fortH = T + V. This problem was partially solved for the
uniformsystem#/; = U, j = 1, ..., nwith polynomial potentials by using the corresponding
Lax pairs [5]. In the following sections we shall restrict our attention to the unifoidoket
systems associated with the one hyperelliptic cdrveC; (2.4).

3. Duality and the Abel map

Let us briefly recall some necessary facts about the Abel map and the inverse Jacobi problem.
The set of point(z, A) satisfying

2g+1 2g+1
¢ Z=Fn) =) er=[]a-2) (3.1)
k=0 j=1

is a model of a plane hyperelliptic curve of geruddereF (1) is polynomial without multiple
zeros. Let us denote by Oi) the Abelian divisor group and denote byC) the Jacobian
of the curveC. The Abel map puts into correspondence the pding Div(C) and the point
u e J(C)I[6,7]

U: Div(C) — J (). (3.2)

The set of all effective divisor® = y; +--- + y, (y; may be not mutually distinct) of deg
of C is called thexth symmetric product of, and is denoted bg?™ = $"C. TheC™ can be
identified with the set of all unorderedtuples{y, ..., y»}, wherey; are arbitrary elements
of C. Now consider restriction of the Abel map (3.2)aty

u. ¢ - Je (3.3)
where

UL V2. ) =UWD) TUQR) + -+ UY).

According to the Abel-Jacobi theorem this map is surjective and generically injective if
n = gonly[6,7]. If n #£ g the Abel map is either not uniquely defined or degenerate.
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The corresponding &tkel system either has a dual system associated with the same curve or
is a superintegrable system [5].

Suppose that the poi® = y; +--- + y,, n < g belongs tac™. The differential of the
Abel-Jacobi map (3.3) at the poiftis a linear mapping from the tangent spdggC™) of
C™ at the pointD into the tangent spac®p)(J (C)) of J(C) at the point{/(D)

Uy Tp(C™) = Tump)(J ().

Now suppose thdP is a generic divisor and; is alocal coordinate ofinear the poing;. Then
(x1, ..., x,) yields a local coordinate system near the pa@kin C™. Letdw; (k =1,...,g)
be a basis for a spadé.(C) of holomorphic differentials od, and neary;

de = qbkj(xj) dx]- (34)

wheregy; (x;) is holomorphic. The Abel-Jacobi mé&fcan be expressed neBras

U(za, ooy 2n) = (Z ¢1(x;) dx;, .y Z CRIED) dxj)-
j=1YY0 j=1YV

Hence

d11(v1) -+ @)

Uy = (3.5)

¢ln(yn) e ¢gn(yn)

is the so-called Brill-Noether matrix [8]. Henceforth, we shall restrict our attention to the
special divisordy, such that coefficients in the expansion (3.4) are independent on the point

Vi
de = ¢k(x_,~) dx]'.

In this case all the rows of the x ¢ homogeneous Brill-Noether matrix depend on local
coordinategxy, ..., x,} identically.

The Jacobi inversion problem (2.7) is formulated as follows: for a given poirt
(B1, B2..., By) € J(C) findn pointsys, y> ..., ¥, on the genug Riemann surfacé such that

8 Yk

S| dw; =8 ji=1...,n (3.6)
k=1"vY0
Here we shall tacitly assume that the base pgint C has already been fixed [6].

If n = g for almost all pointa: € J(C) the solutionD = y,; +- - -+y, existand is uniquely
determined by system (3.6) (for the unordered set of poift§6]. However, if the degree
n < g of the symmetric produat™ is less than genus of C, the Abel map shows a lack of
unigueness. In this case we can propose that two different pojriss J(C) have one Abel
preimageyi, ..., y,} € C™.

The Abel preimage of the point € J (C) isgivenbythe sdt(p1, g1), ..., (pn. gx)} € C™,

where{qs, ..., g,} are zeros of the Bolza equation [7, 9]
e(h, u) = A" = A" Lo, (w) = 2 P () — - — @pa(w) =0 (3.7)
and{ps, ..., p,} are equal to
de(A, u)
Pk = — (3.8)

Br |iey,
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Here the vectot: belongs to the Jacobiah(C) andgy ;(u) is the Kleinianp-function [7, 9].
Now we turn to the uniform Sickel systems. We can regard each expression (2.4) as
being defined on the gengsRiemann surface

C: y2=F() FO) =) aus(h) — U (3.9)
k=1

which depends on the values of integrals of motion. For the Stkel systems o®?" the
minimum admissible genygof the curveC is equal tog = [(n — 1)/2].

Thenth symmetric product of defines the:-dimensional Lagrangian submanifold in the
complete symplectic manifol@?’

C™: C(p1, q1) % C(P2, q2) X -+ X C(Pus qn)- (3.10)

Then, the integration problem (2.6) and (2.7) for the equation of motion is reduced to the inverse
Jacobi problem (3.3) on the Lagrangian submanifold (3.10). The corresponding holomorphic
differentialssw; are equal to

Skj ()») di
z(2)
The set of these differentials either forms a basis in the space of holomorphic differentials
H1(C) [6] or may be a complement to a basis. The corresponding: Stackel matrix be the

n x n block of the transpose Brill-Noether matti; .

The different blocks are determined by the dudc®el systems. In this case vectors
differing in the first entry only

u={t,p2,.... B} € J(C) a={i, B2 ..., B} € J(C)

have a common Abel preimadépi, g1), . - ., (Pn, gn)} € C™.
Let us consider the standard basis of holomorphic differentict, ii@)

dwy = (3.11)

)\’kfl
dw, = ——da k=1,...,g. 3.12
k 0 8 ( )
Recall, that the derivativi}, bears a great resemblance to the canonical @apP¢~* and,
therefore, to the Veronese mp — P¢~1 given by a basis for the polynomial ring of degree
g — 1. With respect to the basis &f;(C) (3.12), the Veronese map 6fhas an extremely
simple expression

(y,A) > A — [A571a872 .0 AL 1]

By using the corresponding homogeneous Brill-Noether madix3.5), we shall determine
the Stckel matrices asi(x n) blocks of the following ¢ x n) matrix:

-1 1 1
% 4 o a

g_2 82 PN 52
q1 qs qn (313)

Evidently, all the Sickel matrices cannot be obtained from the homogeneous Brill-Noether
matrices. For instance, the&8kel matrices (2.10) are non-homogeneous matrices.
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4. Lax representation

Henceforth, we shall restrict our attention to the basis (3.12) and the homogeneous matrix
(3.13). For the correspondingagkel systems let us look for the Lax representation as

L:( houp.q)  e(hq) ) (4.1)

f()wP’CI) —h()wP’Q)

Let us fix the hyperelliptic genug curveC and the dimension of the phase space€ g.
Then we extract then(x n) Stackel matrixS from the matrix (3.13) and define the Hamilton
function H (2.9) withU = 0. Next we define the functios(), u) (3.7)

et q)=[]r—a)) (4.2)
j=1

with n zeros, which are solutions of the inverse Jacobi problem. Then we introduce the second
entry of the Lax matrix as

1 de())
2v(k,q) dt
Here the functiony(i, ¢) is calculated by using the second Bolza equation (3.8)

1 de()) _ de(d)
v dr /),  Ouy,

h()‘) = +w()‘v p, Q)e()\)

B ey, = i = ( @.3)

A=
Let the third entry of the Lax matrix takes the form

_ 1dh(n)
W =3"a

Here the single unknown functian(i, p, ¢) is determined such that the spectral curve of the
Lax matrix (4.1)

C: z2=F(}) = —detLo(r) = h?(L) +e(L) f(1) (4.4)

be the same as the initial algebraic cutv€.4) byU = 0.
The above constructed matry (1) (4.1) reads as

1
—z—et(k) +w(A, p,q)e(d) e()
Lo(A) = v 1 1 (4.5)
—h;(A) —e (M) —w, p,g)e(d)
v 2v
where
W e =YY o)
et - dt - { , € } t = dt - { ’ }

obeys the Lax equation

dLg

— ={H, Lo} =[Aq, L
o { o} = [Ao, Lo]
with the second matrix

o, 1
AO:U(A,q)< v op ? —~w(, p,q) )
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By definition of the Lax matrix all the pairs of separation variabkes= (p;, ¢;) (4.2) and
(4.3) lie on the spectral curv&(4.4) of the matrixLg (4.5)

Py =pi=h*G0)|,_, =F=q)=FW|,.

For the systems with the polynomial potential= O we propose to change the enjfy)) in
(4.5)

_ 1dh(v)
=14

where we add a new functian(i, ¢) depending on coordinates only. Of course, to construct
the Lax matrix here

+tud, q)e()

1
—2—6,(A) +w(A, p,q)e(r) e(A)
L) = z (4.6)

1
—h(X) +ur, q)e(r) ——e(A) +w, p,q)ed)
v 2v

we have to use the complete Hamiltonian with=£ 0. The associated second Lax matrix
reads as

0 0 wk, p,q) 1
A=A = v(h . 4.7
°+< v, Qu(r, q) 0) i ’4)< uGhq)  —w(h, p.q) > @.7)

To consider the corresponding Lax equation

dL(x)
— =|A), L(A
ar [AG), L(W)]
we can assume that the common faat@r, ¢) in front of the matrixA may be associated with
the change of the time for the&ikel systems.

In general, the proof of existence functionsw andu requires an application of the
method of algebraic geometry [7]. By definition of the Lax matrit€s) (4.6) andA (L) (4.7)
this problem may be reduced to the solution of the single equation

dfr(n) dF (A, e, v, u)
———= — 2v(uh — =0 —_— =
ar v(u wf) — ar
for the given functiore()) (4.2) and the given HamiltoniaH (2.9).

If we consider the lowern{ x n) block of the matrix (3.13), the differentials (3.11) span
a whole spacé{1(C) and the Abel map is the one-to-one correspondence. In this case from
equations (3.8) and (4.3) follows that

v(A,g) =0 w(, p,q) =0.

Ifwe putv = 1, rename = x and introduce a ‘new’ time variabte equation (4.8) is rewritten
as

0 (4.8)

ou(x, t, ) _
ot -

This equation may be identified with the equation for the finite-band stationary solutions
du(x, T, A)/0t = 0 of the nonlinear soliton equations. In this theory equation (4.9) is called
the generating equation. For different choices of the forma(aj andu (), this procedure
leads to different hierarchies of integrable equations, as an example for the KdV, nonlinear
Schibdinger and sine—Gordon hierarchies or to the Dym hierarchy (see references in [5]).

[393+u()d, + 2u, (V)] - e(r) =0 x =1 (4.9)
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Functionu (1, g) in (4.9) is constructed by using the functie¢.) (3.7)—(4.2),

uh, g1, ... qn) = [¢) e 2 W], - (4.10)

Here ¢ (1) is a parametric function on the spectral parameter aigd [are the linear
combinations of the following Taylor projections:

+00 N
£l = [ 3 zkxk] = et (4.11)
k=—00 N k=0

or the Laurent projections [5, 11].

If the differentials (3.11) span the whole spa¢g(C) the corresponding Stkel systems
describe all the possible systems, which are separable in the orthogonal curvilinear coordinate
systems irR” [5]. Let us consider the &tkel systems which are dual to these systems. To
apply equation (2.12) to the functiefnir) (4.2) and by using definition (4.3) one obtains

- 1 - detS 1
pr = h()h)h:qk = (‘2—5{1‘1, 6()»)}) == (-2—5{1‘1, e()»)}>k
=qk

A= B detg
detS (v detS (v
detS \ v A=qx detS \v A=qx

Recall thatv = 1 for the integrable system with the Hamiltoniahassociated with the lower
(n x n) block of the matrix (3.13).

Thus, according to (4.12), below we shall consider tieB| systems with the following
functionsv(g) only:

_ detS(q1, ..., qn)
detS(qa, ..., qn)

v(q)

Let us briefly discuss the canonical transformation which transforms a Hamiltonian (2.9)
intothe natural fornif = T+V . For integrable systems separable in the orthogonal curvilinear
coordinate systems A’ the Abel map is in one-to-one correspondencewnd {H, v} = 0.

In this case we can put= 1 and introduce the functioBi(1),

B2(L) = e(r) (4.13)

which was proposed in the theory of the soliton equations [10]. It allows us to rewrite the
generating function of the integrals of motion,

F(\) = —BB, +u(x, q) B (4.14)
as a Newton equation for the functi¢h
Bh,q) = —F(h, a1, ...,0,) B30k, q) +u(r, q) Bk, q). (4.15)

To expand the functio8(1) on the Laurent set

N
B = Z.Xj)vi
Jj=0

it is easy to prove that the coefficients obey the Newton equation of motion (4.15) (see
references within [5, 10]). Here we reinterpret the coefficients of the funétian in (4.15)
not as functions on the phase space, but rather as integration constgi3).
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In general, by, # 0 the generating functiof (\) = — detL (1) (4.6) is equal to

FL) = %(el2 - Zee,,) + <% - w)% + (w2 + %) .
In this case the suitable canonical transformations, which transform any Hamiltonian (2.9) into
the natural form, are unknown.
Although we cannot prove the validity of the presented Lax representation in general,
this construction works for the many well known mechanical systems. In the next section we
consider some two-dimensionab8kel systems with homogeneoua&tel matrices in detail.

5. Examples

Let us consider four orthogonal systems of coordinates on a plane: elliptic, parabolic, polar and
Cartesian. The Lax matriko(1) (4.5) byU = Oistransformed to the Lax matrix(1) (4.6) by

U # 0 by using the outer automorphism of the space of infinite-dimensional representations of
the underlying algebrd (2) [5, 11]. We shall consider the Lax representations for the geodesic
motion byU = 0 more extensively.

5.1. Parabolic and Cartesian coordinate systemsX(, p, ¢) = 0)

Let us consider two hyperelliptic curves,
2g+1

cv: 2= H()» —Ai)
i=1

2g+1
@2 Z=2]]0— .
i=1

(5.1)

If we choose the standard basis in the space of holomorphic differentials one obtains the
following homogeneous matrices (3.13) for two-dimensional systems:

g—2 g—2
-1 -1
qf qé" q1 qz
Uy (g1, q2) = q-f q% Us' (g1, q2) = q1 g2 |. (5.2)
1 1
q1 qz
1 1
-1 -1 _- _=
q1 q2

Different (2 x 2) blocks of the matriceZsr]’." determine different Sickel systems.

Let us consider two blocks for the each matrix. So, for the cdf¥ewe shall consider
the following matrices:

2 2
_( 91 q2 g _ [ 91 492
Sl_< 1 1 ) Sl_( 1 -1 > (5.3)

For the second cun@? the associated Stkel matrices are equal to

1 1 ) q1 q2
Sy = 1 1 Sy = 1 1 1. (5.4)
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Introduce the Hamilton functions (2.9) iy = 0

w_ Pi-ps (L) )

Hy” = - Hy” = (q1 +CI2)71H0
q1 —q2 (5.5)

2 CIlPZ - 42172 2 2 .

H(;)Z 1 2 H() (q +q)1H()
q1 — q2
The corresponding second integrals of motion of the dual systems are related
Jo =g - B2 g g 0
q1*q2

The functionse (A, u) (3.7)

A — A —
) =0 —g)h—gq2)  ed) = (“KJ (5.6)

have two zeros, which are solutions of the inverse Jacobi problem (2.Z}*bandC®,
respectively.
Let us introduce new physical variables. For the first cit¥eequation (4.15)
y
2 =0 —q) — q2) = B%(x V=Y
e1(A) = (A —q1) (A — q2) = B(2) B() >~ M

yields the following canonical transformation:

=1(x =2y p1=px — /2y py
= 2(x +/2y) p2=pe+/2y py.

For the second curw&® the corresponding equation

2
() =2 A — g —q) = A —x — Z—A

defines the standard parabolic coordinate system

41=# PL=Px — ——— Py
y
x + /x2+y2 /x2+y2_x
q2 = 2 p2=pxt y Dy-

By U = 0 the Hamilton functions are given by
HY =4p,p,  H = p?+p2
According to (4.3) and (4.12) functiongq1, g2) entering in the Lax representation are equal
to
1 for matrices Si,

v(A, g1, q2) = 1 _ N (5.7)
' (G+q) == for matrices S .
X

In physical variables the Lax matrices are given by
L ( Pt (@h—x)p, A —hx +3(x% —2y) )
5 =

—4p? —px — (2L = X)p,
1 1 (5.8)
Lt —yp, A—X — —
L(z) . P Zkypy 4)»y
o 1, 1
Py Px = 5 YDy
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For the dual Sickel systems the Lax matricé§> have the form

0 0

1 _ @ w,s0n (00
Ly =Lg + aPxPy o | = Lg” + H, ( 1 0)
X
5 o (5.9)
i@_1@y| o, o _ w200
0 0 Pyt py 0 0 0 1 0/
X

By using the property{s, (1), v(g)} = 0 of the functionuv(q) (5.7) we can easily prove
equation (4.8) for the dual systems by using the same equation for the system with

fi={H, f+H}=f, =0.

Another consequence of this property is that the funciigh, p, ¢) in (4.5) is equal to zero.
The spectral curves of the matricgég (5.8) coincides with the initial curveggl'z) (2.4)
atu =0
Z=Hy'h+lg! = HY (5.10)

Here]él‘z) are the second integrals of motion (2.2). For the dual systems with the Hamilton
functionsﬁél’z) the corresponding spectral curves are equal to

7(2
- . - J
Z=Hy W) 2= Ay (5.11)

If for the system with the HamiltoniaHél) the Abel map is in one-to-one correspondence on
the curve (5.10), then for the same system on the curve

2= ezkz +e1A teg

the associated Abel map is not uniquely defined in general. So, on this curve we can introduce
the second Sickel system with the dual Hamiltonia#" .

Let us briefly consider systems with polynomial potentidlsz 0. As an example, we
introduce different potentials for the curve$-? (5.1)

UPgp) =g} +Bq;  UY(g)) =a?q} + By;. (5.12)

To describe these potentials we have tojut 6 and 4 in (4.11) and have to use the following
parametric functions:

dP (1) = —a®® and dP ) = —a?23
for the curveg™® andC®, respectively. For both curves the common funciioh, g1, ¢») is
given by

u®? = () + 2x). (5.13)
Here we restrict ourselves to the presentation of the funatimmly, the complete Lax matrices
L(i») may be constructed by the rule (4.6).

The spectral curves of the corresponding matrices (4.6) coincide with the initial curves
(3.9). For instance, curves for the systems with dual Hamiltontaig’ are

cV: 2=a? 5+ A3 —HA—J

C?: =23 —Hr+B— %
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The Poisson bracketrelations for the Lax matrix (5.8) and (5.9) are closed into the following
linearr-matrix algebra:

1 2 1 2

r21(A, w) = —Tlrp(u, A)II.

Here the standard notations are introduced:

Ly=Loy®l  Luw=1I®Lw

andIl is the permutation operator of auxiliary spaces [12].
At v, = 0 for the systems related to the matricg5? the corresponding-matrices
rij (A, w) in (5.14) may be factorized

rij = rg +ri (5.15)
The first matrix is a standardmatrix on the loop algebré(s/(2))
1 000
1 1 0 010
p - o _ -
rlz(k’“)_x—u r—p|l 01 0 0] (5.16)
0 001

The second matrix may be associated with outer automorphism of the space of infinite-
dimensional representations of the underlying algetit@) [5,11]. The corresponding
dynamicalr;‘j—matrices depend on the coordinates only

. ulh,q)—u(u,q) 00
rip = - o_Qo_ o_ = 1 0 )

(5.17)

At v, # 0 for the dual Sickel systems related to the matri&sz we have to add to the
r-matrices (5.15) the third term

ri; = v(q1, 42) (5.18)

O O O

0 0O
0 0O
1 00
0 00O

This matrixr;; may be connected with the Drinfeld twist for the Toda lattice associated with
the root systenD,,. Let us consider the Drinfeld twist [13] of the quantutrmatrix

R =FRF,' Fo1 = IIFTL. (5.19)

Here the matrixk satisfies the Yang—Baxter equation and the mairhas the special property
[13]. To introduce the corresponding lineamatrix [14], one obtains

R =1+2pr” + O(n?) F =1+nr'+01?).
Then we consider the limit of the twisted matdxby  — 0
Rip =1 +n(rf,+ri, — TI(rL, + i) TT) + O(n?). (5.20)

Formally, coefficients by) may be called the twisted linearmatrix.
By using generators, e, f of the underlying Lie algebral (2)

[h.e] =2¢  [h.fl=—-2f [e.fl=h (5.21)
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let us introduce an appropriate elemént U (sI(2)) ® U(sl(2))
Fe=expé-e® f) teC

from the tensor product of the corresponding universal enveloping algélisa&)) [13]. In
the fundamental spié—representatiowl/z we have

1
0
0

MU N )

00

0 O

F(&) = (012 ® p12)Fe = 1 0
1

0 0O
To substitute in (5.19) the Yang solution of the Yang—Baxter equakica I + (/1)1 we
obtain a twistedR-matrix. If the elemeng(g) is a suitable function on coordinates, this
dynamical twistedR-matrix may be used to describe the Toda lattice associated with,the
root system [15].

Let us consider the twisted dynamical matrix (5.19¥ at v(g). We can see that the
linearr-matrix associated with the dual&@kel system (5.16)—(5.18)

re=riptr;  ra=-TeRp
is equal to half of the twisted linear matrix (5.20).
Recall, for the Sickel matricess; (5.3) andS- (5.4) that the corresponding differentials

(3.11) spart;. The associated Hamilton functions have a natural form in physical variables.

For instance, Hamiltonians with potentials (5.12) are given by
HY =2p.p, + 3022 + 5%y + 5xh) + 3 85x% + )

@) 1.2,1.2,1.2 2 2 (5.22)

H'Y = 5p; +5p5 +50°x(2x"+y%) + B.

To consider the dual &tkel systems we have to use the additional transformation
X =+2x Dx = DxV 2% (5.23)
for the first curve and the following more complicated transformation:

=2 )
XZgX 3 Px = DxX 3

2 p, \/? 5 (5.24)
y= 53 pPy = — 50()’

for the second curve. After this canonical change of variables the HamiltoRi&rR (5.5)
obtain the natural form

22 +10y%+58%) [2 pEBi+y) [2
8 X 4 F
H® = 3(p5+ p2) + 30’5 (352 + 3% + %2,

HY =2p.p, +
PPy (5.25)

The system with the HamiltoniaH ® is the so-called second integrable case of the Henon—
Heiles system [1]. The dual system with the Hamiltoni@f? is the so-called Holt-type
system [1].

An additional canonical transformation (5.24) allows us to obtain natural Hamiltonians
for the restricted class of potentidls(5.12) only. Unlike the canonical transformation (5.23)
may be used for any potentials. As an example, the rational potential

a p
U(q):;+3+yq+5q2+pq4
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gives rise to the following Hamiltonian:

- 2
H:Zﬁxpy_(N_y)z oy \/7 ]/\/7+ 3+—(x+)’)

Also we can add potential terms (5.25) to this Hamiltonian.
At v = 1 andw = 0 the Lax representation (4.5) for a system with an arbitrary number
n of degrees of freedom may be regarded as a generic point at the loop afgek®) in
the fundamental representation after an appropriate completion [5]. As an example, for the
generalized parabolic coordinate systems funcion is given by

",_ A—q; n—1 2
e(A):M:A—xn+ZX—k S e R
HZ::L()" - (Sk) k=1 4()‘- - (Sk)

To construct the Lax representation for a potential motion we can use the outer automorphism
of the space of infinite-dimensional representationd ¢f) proposed in [11].

At v, # 0for the dual Sickel systems the Lax representations may be constructed without
any problem as well. For instance, let us consider a system with three degrees of freedom. To
construct the Lax matrix (4.5) and (4.6) with the functiogiven by (5.13) one obtains

y2 Z2

E(X)ZA—X—T—M

keR

b= 1(17 +py+177+ azkz) 2(2x2+y2+zz).

After an additional canonical transformation (5.24) extended onthe variables the
Hamilton function takes the form

H= px+py+pz(l+1k _2/3)+ ax_2/3( 252 +y +Z)

So, the main unsolved problem is to introduce an additional canonical transformation, which
transforms the dual Hamilton functidi into the natural form.

5.2. Elliptic and polar coordinates{(p, q) # 0)

Recall, that the polar coordinate system may be obtained from elliptic coordinate system and,
therefore, we shall consider elliptic coordinate systems in detail.
For the elliptic coordinate systems the algebraic curve is given by

2g+1
o 2 IE0—2)

= k e C.
(A —k)(A +k)
Let us consider two &tkel matrices associated with this curve
n 12 4 443

— k2 g5 —k? - 212 G212
Sz = . L S=| & ) 22 ) (5.26)

—k2 g3 —k? -k 2—k?
For the polar coordinate system thé&&tel matrices are non-homogeneous matrices

1 0 q? 0

S,=| 1 1 S,=| 1 1 . (5.27)

@& MgZ—h Z AgE—h
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At U = 0 the initial hyperelliptic curves (3.9) for the matrics and S are given by

Ho\ +J 4HoA2 + J;
2 0 2 0 0
_ 07 - 7 5.28
ST e ¢ n— k2 (5.28)
with the following Hamiltonians:
20,2 _ k2  n2(,2 k2 5 1
Hé3) _ p1(gy ) — p5(q5 ) és) _ H (5.29)
q1—q2 4(q1+q2)
The Hamiltonians related to the matricesandS, read as
@ _ o 45—k , = ) 2 (4
Hy’ =pi—4 >—D3 Hy,” =q,°Hy . (5.30)

1
Let us fix elliptic coordinates by using the equation

(=g —q2) x2 y?

e(A) = =1- —
A=k)A+k) A4 —k) 4AAa+k)

such that

1= 5% +y%) + 3V (24 yD)2 + 16k(x? — y2) + BM

g2 = 3 +y%) — 3V +y2)2 + 16(x2 — y2) + 642,
The corresponding equation for the polar coordinates

A — 2 42
sy @) Ay
AA—1) 4 r-1

immediately yields
2
X
qu=r=+x%+y? 612=C0§(¢)=x2+y2'
In physical variables the Hamiltonians (5.29) and (5.30) have a common form
pi+p?
X2 + y2 :

To construct the Lax representations we begin with the calculations of the funetiang
by the rule (4.3)—(4.12)

1 for matrices Ss34

1 o ix S
7@tq) = R for matrix S3 (5.31)
1 1

Bl for matrix S,.
g; Xy

So, for the Shckel systems associated with the matriSg$5.26) andS, (5.27) one obtains

AR SR i
20 —k) 2(r+k 4(n — k AL +k
Ly = | 2D 20+D G—k  4G+R 5:32)
o, _xpe by
A—k Atk 20.—k) 201 +k)

Heree = 1 for the elliptic coordinate system amd= O for the parabolic coordinate system.
The spectral curve of the Lax matrbg(A) coincides with the initial curve (5.28).
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For the dual systems, in contrast to the Cartesian and parabolic coordinates, the Lax
matrices have a more complicated form. Both these Lax matrices may be constructed by the
rule (4.6) with the following common functiow(p, ¢):

w(p,q) =2VAH. (5.33)
The Lax matrix reads as

€=0,1 (5.34)

Lo = Lo() + ( we(r) 0 )

—2w[h(X) —we()) —ew] —we(A)
Heree(i) andh (1) are entries of the corresponding matridegx) (5.32) ate = 0,1. As
above, the spectral curve of the Lax matfig(A) ate = 1 coincides with the initial curve
(5.28).

For the Cartesian and parabolic coordinate systems we can obtain the equation

{H v @ }eO. 9} = {H. (g1 + g2)}e(h. 9)} = 2
on the HamiltonianH, the functions (1) andv(g) define the change of time. For the polar
and elliptic coordinate systems the corresponding equation is

{H v @e(, 9} =8 —e) =01

Hence, from equation (4.8) it follows that the functietip, ¢) in (4.5)—(5.33) does not equal
zero. If we consider a more complicated change of the time for the Cartesian and parabolic
coordinate systems, one obtains a non-zero funatig4.5) as well.

The Poisson bracket relations for the Lax mattix2) (5.32) are closed into the standard
linearr-matrix algebra (5.14) with the rationaimatrix (5.16) on the loop algebra(s/(2))
[12].

The Poisson bracket relations for the dual Lax makxikt) (5.34) have a polylinear form

1 2 1 2
{LoLaw ] =[reL®]+[ralw]
1 2 1 2 1 2 2 1
+RL(A)L () + L(A)L(u)R — L(A)RL (1) — L(W)RL(2).
Here the linear-matrix reads as

ria(h, ) = riy(h — w) +4ery r21(d, ) = —Trp(A, w11

wherer? () — w) is the standard linear-matrix on the loop algebr&(si(2)). The second
dynamical term is given by

0 0 OO
Y _ () 0 0 OO
=V 1 0 0
0 —w 0 O
The quadraticR-matrix is closed to the twisted linearmatrix (5.20)
2 2
R:—— w+w:—— w—l_[wl_[.
w(rlz 1) w(r12 ripI)

At U # 0 functionsu (i, ¢g) may be constructed as usual [5,11]. Note, that both dual
Hamiltonians obtain a natural form after the following additional canonical transformation of

variables:
x:x/}—\/; Px=\/§ﬁx—\/§l3y
y = —I(\/JTC"'\/;) Py = |(\/§ﬁx + \fj}ﬁ\)
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As an example, for an elliptic coordinate system the uniform potential
U (q)) = aq} + Bq;
gives rise to the following dual Hamiltonian:

H=2pp,+ %oz +RG +h) — (255 + ki + k7).

p
83y
For the polar coordinate system we present the non-uniform degenerate potentials

U (g =8  U;"(g2) =0
associated with the following dual Hamiltonian:

Dy D (16 1 1 2)
~—Bl—=*+=-+t=-—-==).
2 Xy x ¥y Xy

Both of these systems may be considered as integrable deformations of the Kepler problem.

6. Conclusions

Inthis paper we have considered relations between the differécit&tsystems. The proposed
change of the time is related to the ambiguity of the Abel map for the hyperelliptic curves. Of
course, a particular family of such transformations (2.8) does not exhaust the set of canonical
changes of time, which preserve integrability. As an example, the Kolosoff transformation
{t, p,q} = {7, P, q} [2] connects the Sickel system with the other integrable noikkel
system. So, itwould be interesting to investigate integrable systems connected witicled St
systems by canonical transformations of time.
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